back
Get SIGNAL/NOISE in your inbox daily

Generative AI adoption surges amid data challenges: The rapid growth of generative AI in enterprise settings is accompanied by significant hurdles in data management and quality assurance, according to Appen’s 2024 State of AI Report.

  • Generative AI adoption increased by 17% in 2024, with expanded use in IT operations, manufacturing, and R&D sectors.
  • Companies are facing a 10% year-over-year increase in bottlenecks related to sourcing, cleaning, and labeling data for AI systems.
  • The demand for high-quality, accurate, diverse, and properly labeled data tailored to specific AI use cases is growing as AI models tackle more complex problems.

Enterprise AI deployments face setbacks: Despite the growth in generative AI adoption, there’s a concerning trend in the overall deployment and return on investment of AI projects across enterprises.

  • There has been an 8.1% drop in AI projects reaching deployment since 2021.
  • Deployed AI projects showing meaningful ROI have decreased by 9.4% in the same period.
  • These declines are attributed to the increasing complexity of AI models and more ambitious AI initiatives undertaken by companies.

Data quality concerns intensify: The report highlights a critical issue in the AI landscape: the declining quality of data used for training and evaluating AI models.

  • Data accuracy has dropped by nearly 9% since 2021, raising concerns about the reliability of AI systems.
  • To address this, 86% of companies are retraining or updating their models at least quarterly.
  • 90% of businesses rely on external data sources for training and evaluation, emphasizing the importance of diverse data inputs.

Data management emerges as a primary challenge: The increasing complexity of AI projects is exacerbating data-related bottlenecks, making data management a central concern for organizations.

  • Data management has become the leading challenge for AI projects in 2024.
  • Companies are focusing on developing long-term strategies to ensure data accuracy, consistency, and diversity.
  • The shift towards custom data collection for training AI models reflects the need for more specialized and high-quality data sets.

Human-in-the-loop approaches gain prominence: As AI systems become more sophisticated, the role of human oversight in machine learning processes is becoming increasingly crucial.

  • 80% of respondents emphasize the importance of human-in-the-loop machine learning for their AI projects.
  • Human involvement is seen as essential for ethical AI development and mitigating bias in AI systems.
  • This approach is particularly critical for generative AI to prevent harmful or biased outputs.

Expert insights on AI trends: Si Chen, Head of Strategy at Appen, provides context on the report’s findings and the evolving AI landscape.

  • Chen notes that while generative AI is driving innovation, it’s also creating new challenges in data management and quality assurance.
  • He emphasizes the need for companies to focus on data quality and ethical considerations as they scale their AI initiatives.
  • Chen suggests that the decline in AI deployment and ROI might be temporary as companies adjust to more complex AI projects.

Implications for the future of AI in business: The report’s findings suggest a period of adjustment as enterprises grapple with the complexities of advanced AI technologies.

  • The challenges in data quality and management highlight the need for improved data governance strategies and tools.
  • The emphasis on human-in-the-loop approaches indicates a shift towards more responsible and ethical AI development practices.
  • As companies refine their approaches to data management and AI deployment, we may see a rebound in AI project success rates and ROI in the coming years.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...